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We propose a method called multifractal detrended cross-correlation analysis to investigate the multifractal
behaviors in the power-law cross-correlations between two time series or higher-dimensional quantities re-
corded simultaneously, which can be applied to diverse complex systems such as turbulence, finance, ecology,
physiology, geophysics, and so on. The method is validated with cross-correlated one- and two-dimensional
binomial measures and multifractal random walks. As an example, we illustrate the method by analyzing two
financial time series.
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Fractals and multifractals are ubiquitous in natural and
social sciences �1�. The most usual records of observable
quantities in the real world are in the form of time series and
their fractal and multifractal properties have been extensively
investigated. There are many methods proposed for this pur-
pose �2,3�. For a single nonstationary time series, a de-
trended fluctuation analysis �DFA� can be adopted to explore
its long-range autocorrelations �4,5� and multifractal features
�6�. The DFA method can also be extended to investigate
higher-dimensional fractal and multifractal measures �7�.

There are many situations where several variables are si-
multaneously recorded that exhibit long-range dependence or
multifractal nature, such as the velocity, temperature, and
concentration fields in turbulent flows �8–10�, topographic
indices and crop yield in agronomy �11,12�, and asset prices,
indexes, and trading volumes in financial markets �13,14�.
Recently, a generalization of the DFA method called de-
trended cross-correlation analysis �DXA� was proposed to
investigate the long-range cross-correlations between two
nonstationary time series �15�. Here we show that the DXA
method can be generalized to unveil the multifractal features
of two cross-correlated signals and higher-dimensional mul-
tifractal measures. The validity and potential utility of mul-
tifractal detrended cross-correlation analysis �MF-DXA� is
illustrated using one- and two-dimensional binomial mea-
sures, multifractal random walks �MRWs�, and financial
prices.

Consider two time series �x�i�� and �y�i��, where i
=1,2 , . . . ,M. Without loss of generality, we can assume that
these two time series have zero means. Each time series is
covered with Ms= �M /s� nonoverlapping boxes of size s. The
profiles within the vth box, �lv+1, lv+s�, where lv= �v−1�s,
are determined to be Xv�k�=� j=1

k x�lv+ j� and Yv�k�
=� j=1

k y�lv+ j�, k=1, . . . ,s. Assume that the local trends of
�Xv�k�� and �Yv�k�� are �X̃v�k�� and �Ỹv�k��, respectively.
There are many different methods for the determination of
X̃v and Ỹv. The trend functions could be polynomials �5�. The
detrending procedure can also be carried out nonparametri-
cally based on the empirical mode decomposition method
�16�. The detrended covariance of each box is calculated as
follows:

Fv�s� =
1

s
�
k=1

s

�Xv�k� − X̃v�k���Yv�k� − Ỹv�k�� . �1�

The qth-order detrended covariance is calculated as

Fxy�q,s� = � 1

m
�
v=1

m

Fv�s�q/2	1/q

�2�

when q�0 and

Fxy�0,s� = exp� 1

2m
�
v=1

m

ln Fv�s�	 . �3�

We then expect the following scaling relation:

Fxy�q,s� 
 shxy�q�. �4�

When X=Y, the above method reduces to the classic multi-
fractal DFA.

In order to test the validity of the power-law behavior in
Eq. �4�, we construct two binomial measures from the p
model with known analytic multifractal properties as a first
example �17�. Each multifractal signal is obtained in an it-
erative way. We start with the zeroth iteration g=0,
where the data set z�i� consists of one value z�0��1�=1.
In the gth iteration, the data set �z�g��i� : i=1,2 , . . . ,2g�
is obtained from z�g��2k+1�= pz�g−1��2k+1� and z�g��2k�
= �1− p�z�g−1��2k� for k=1,2 , . . . ,2g−1. When g→�, z�g��i�
approaches a binomial measure, whose scaling exponent
function Hzz�q� has an analytic form �17,18�,

Hzz�q� = 1/q − log2�pq + �1 − p�q�/q . �5�

In our simulation, we have performed g=17 iterations with
p= px=0.3 for x�i� and p= py =0.4 for y�i�. The analytic scal-
ing exponent functions Hxx�q� and Hyy�q� of x and y are
expressed in Eq. �5�. The cross-correlation coefficient is
0.82. We find that Fxy, Fxx, and Fyy all scale with respect to s
as power laws. Note that there are evident log-periodic os-
cillations decorating the power laws, which is an inherent
feature of the constructed binomial measures �19�. The best
estimates of the power-law exponents are obtained when s is
sampled log-periodically �20�. The resultant power-law ex-
ponents hxy, hxx, and hyy are illustrated in Fig. 1. The MF-*wxzhou@ecust.edu.cn
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DFA analysis gives hxx�q�=Hxx�q� and hyy�q�=Hyy�q�. We
also find that

hxy�q� = �hxx�q� + hyy�q��/2. �6�

For monofractal autoregressive fractional moving average
�ARFIMA� signals, this relation with q=2 is also observed
�15�.

As a second example, we consider multifractal random
walks �21�. The increments of a MRW are ��k�e��k�, where
��k� and ��k� are uncorrelated and ��k� is a white noise. In
order to generated two cross-correlated MRWs, we can gen-
erate two time series �x and �y possessing the properties in
the MRW framework and rearrange �y such that the rear-
ranged series �y has the same rank ordering as �x �22�. We
generate two MRW signals of size 216 with �2=0.02 for x�i�
and �2=0.04 for y�i�, whose cross-correlation coefficient is
0.69. When q is negative, no evident power-law scaling is
observed for Fxy�s�, which has great fluctuations. When q is
positive, nice power-law scaling is observed for Fxy, Fxx, and
Fyy, as illustrated in Fig. 2�a� for q=2 and 5. The power-law
exponents hxy, hxx, and hyy are illustrated in Fig. 2�b�. We see
that Eq. �6� holds in repeated numerical experiments. How-
ever, this relation does not hold for some other realizations of
MRWs.

We now apply the MF-DXA method to the daily closing
prices of the Dow Jones Industrial Average �DJIA� and Na-
tional Association of Securities Dealers Automated Quota-
tion �NASDAQ� indices. For comparison, we have used the
same data sets and same scaling range as in Ref. �15�. No
evident power-law scaling is observed for negative q values.
For positive q, we see power-law dependence of Fxy, Fxx, and
Fyy against time lag s. Two examples are illustrated in Fig.
3�a� for q=2 and 5, where the case of q=2 reproduces the
results in Ref. �15�. The power-law exponents hxy, hxx, and
hyy are depicted in Fig. 2�b�; they are nonlinear functions
with respect to q. We see that each time series of the absolute
returns possesses multifractal nature and their power-law
cross-correlations also exhibit a multifractal nature.

We can generalize the one-dimensional �1D� MF-DFA to
the 2D version and its extension to higher dimensions is
straightforward. Consider two self-similar �or self-affine�
surfaces of identical sizes, which can be denoted by two
arrays x�i , j� and y�i , j�, where i=1,2 , . . . ,M and
j=1,2 , . . . ,N. The surfaces are partitioned into Ms�Ns dis-
joint square segments of the same size s�s, where
Ms= �M /s� and Ns= �N /s�. Each segment can be denoted by
xv,w or yv,w such that xv,w�i , j�=x�lv+ i , lw+ j� and
yv,w�i , j�=y�lv+ i , lw+ j� for 1� i , j�s, where lv= �v−1�s
and lw= �w−1�s.

For each segment xv,w identified by v and w, the cumula-
tive sum Xv,w�i , j� is calculated as follows:

Xv,w�i, j� = �
k1=1

i

�
k2=1

j

xv,w�k1,k2� , �7�

where 1� i , j�s. The cumulative sum Yv,w�i , j� can be cal-
culated similarly from yv,w. The detrended covariance of the
two segments can be determined as follows:

Fv,w�s� =
1

s2�
i=1

s

�
j=1

s

�Xv,w�i, j� − X̃v,w�i, j���Yv,w�i, j� − Ỹv,w�i, j�� ,

�8�

where X̃v,w and Ỹv,w are the local trends of Xv,w and Yv,w,
respectively. The trend function is prechosen in different
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FIG. 1. Scaling exponents hxy�q� estimated using the multifrac-
tal detrended cross-correlation analysis of two cross-correlated bi-
nomial measures generated from the p model. The numerically es-
timated exponents hxx�q� and hyy�q� obtained from the multifractal
detrended fluctuation analysis of x�i� and y�i� are also presented,
and well match the analytical curves Hxx�q� and Hyy�q�. This ex-
ample illustrates the relation hxy�q�= �hxx�q�+hyy�q�� /2.
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FIG. 2. �Color online� Multifractal nature of the power-law
cross correlations of two MRWs. �a� Power-law scaling in Fxy, Fxx,
and Fyy with respect to s for q=2 and 5; �b� power-law exponents
hxy, hxx, and hyy.
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function forms �7�. The simplest function could be a plane
ũ�i , j�=ai+bj+c, which is adopted to test the validation of
the method. The overall detrended cross correlation is calcu-
lated by averaging over all the segments, that is,

Fxy�q,s� = � 1

MsNs
�
v=1

Ms

�
w=1

Ns

�Fv,w�s��q/2	1/q

, �9�

where q can take any real value except for q=0. When q
=0, we have

Fxy�q,s� = exp� 1

2MsNs
�
v=1

Ms

�
w=1

Ns

ln�Fv,w�s��	 , �10�

according to L’Hôpital’s rule. The scaling relation between
the detrended fluctuation function Fxy�q ,s� and the size scale
s can be determined as

Fxy�q,s� 
 shxy�q�. �11�

Since N and M need not be multiples of the segment size s,
two orthogonal strips at the end of the profile may remain.
Taking these ending parts of the surface into consideration,
the same partitioning procedure can be repeated starting
from the other three corners �23�.

It is worth pointing out that the order of cumulative sum-
mation and partitioning is crucial in the analysis of two- or
higher-dimensional multifractals. Consider the point located
at �lv+ i , lw+ j� in the box identified by v and w, where
1� i , j�s. The cumulative sum X�lv+ i , lw+ j� can be ex-
pressed as follows:

X�lv + i,lw + j� = Xv,w�i, j� + �
k1=1

lv

�
k2=1

lw

x�k1,k2�

+ �
k1=1

lv

�
k2=lw

lw+j

x�k1,k2� + �
k1=lv

lv+i

�
k2=1

lw

x�k1,k2� .

�12�

For any pair of �i , j�, Xv,w�i , j� is localized within the seg-
ment xv,w, while X�lv+ i , lw+ j� contains extra information
outside the segment as shown above, which is not constant
for different i and j and thus cannot be removed by the
detrending procedure. We find that the power-law scaling is
absent if X�lv+ i , lw+ j� is used in Eq. �7�. This observation is
analogous to the case of higher-dimensional detrended fluc-
tuation analysis �7�.

We now present numerical experiments validating the
two-dimensional multifractal detrended cross-correlation
analysis. There exist several methods for the synthesis of
two-dimensional multifractal measures or multifractal rough
surfaces �24�. The most usual method follows a multiplica-
tive cascading process, which can be either deterministic or
stochastic �17,25–27�. The simplest one is the p model, pro-
posed to mimic the kinetic energy dissipation field in fully
developed turbulence �17�. Starting from a square, one par-
titions it into four subsquares of the same size and assigns
four given proportions of measure p11, p12, p21, and p22 to
them. Then each subsquare is divided into four smaller
squares and the measure is redistributed in the same way.
This procedure is repeated g times, and we generate multi-
fractal “surfaces” of size 2g�2g. The analytical expression
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FIG. 3. �Color online� Multifractal nature of the power-law
cross correlations of the absolute values of daily price changes for
DJIA and NASDAQ indices in the period from July 1993 to No-
vember 2003. �a� Power-law scaling in Fxy, Fxx, and Fyy with re-
spect to s for q=2 and 5. The scaling range is the same as in Ref.
�15�. �b� Dependence of the power-law exponents hxy, hxx, and hyy

as nonlinear functions of q, indicating the presence of multifracta-
lity. There is no clear relation between these exponents.
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FIG. 4. Multifractal detrended cross-correlation analysis of two
cross-correlated synthetic binomial measures from the p model. The
size of each multifractal is 4096�4096 and the cross-correlation
coefficient is 0.48. The numerical exponents hxx�q� and hyy�q�
obtained from the multifractal detrended fluctuation analysis
of X and Y are located approximately on the analytical curves
Hxx�q� and Hyy�q�. This example illustrates the relation hxy�q�
= �hxx�q�+hyy�q�� /2.
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of Hxx�q� or Hyy�q� for individual multifractals has the same
form,

Hzz�q� = �2 − log2�p11
q + p12

q + p21
q + p22

q ��/q , �13�

where the subscript z=x for X and z=y for X.
In our simulation, we have used p11=0.10, p12=0.20,

p21=0.30, and p22=0.40 for X and p11=0.05, p12=0.15,
p21=0.20, and p22=0.60 for Y. We find that the cross-
correlation coefficient between the two multifractals depends
linearly on the generation number g, c=−0.0408g+0.9528,
where the value of R2 is 0.9997. The 95% confidence inter-
vals for the slope and intercept are �−0.0415,−0.0402� and
�0.9489,0.9566�, respectively. In our numerical experiment,
we have used g=12, which gives c=0.48. Very nice power-
law behaviors are confirmed in Fxy�q ,s�, Fxx�q ,s�, and
Fyy�q ,s� with respect to s for different values of q. The
resultant power-law exponents hxy�q�, hxx�q�, and hyy�q�
are illustrated in Fig. 4, marked with open circles, squares,

and triangles, respectively. We find that the relation
hxy�q�= �hxx�q�+hyy�q�� /2 holds.

In summary, we have proposed a multifractal detrended
cross-correlation analysis to explore the multifractal behav-
iors in power-law cross-correlations between two simulta-
neously recorded time series or higher-dimensional signals.
The MF-DXA method is a combination of multifractal analy-
sis and detrended cross-correlation analysis. Potential fields
of application include turbulence, financial markets, ecology,
physiology, geophysics, and so on.
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